
Prieto-Rodriguez (2023). Coding and Computational Thinking: A time that came and went but will always be ours. In Online
Proceedings of the Coding, Computational Modeling, and Equity in Mathematics Education Symposium, St. Catharines

(Canada), April 2023.

CCMEME
2023

Coding and Computational Thinking: A time that came and went but will always be ours.

Elena Prieto- Rodriguez
University of Newcastle

In September 2015, the national Australian Curriculum was officially endorsed. This

new curriculum included a Digital Technologies (DT) subject, within the Technologies
learning area, which was to be focussed on the teaching of “computational thinking and
information systems to define, design and implement digital solutions” (ACARA, 2018a,
2018b). The document stated that this subject was to be mandatory for all Australian students
from Kindergarten to Year 8 and available as an elective for Year 9 and 10 students. All the
different States and Territories in the country set to task and by 2018, education authorities
had incorporated coding and computational thinking into their respective syllabi.
Interestingly, neither of these syllabi incorporated computational thinking within
mathematics, even though computational thinking is closely tied to mathematical thinking
(Selby & Woollard, 2013). Also, at the time, there were serious concerns about the fact that
very few teachers, particularly in the primary school sector, had any formal training in either
of these knowledge areas, and there were also concerns that they possessed pedagogies to
teach them authentically (Falkner et al., 2014).

Many Professional Development (PD) initiatives for teachers were thus developed by
universities and private organisations to address concerns related to teacher preparation for
the Australian DT subject (Commonwealth of Australia, 2016). These initiatives ranged from
Massive Online Open Courses (MOOCs), such as those run by the University of Adelaide’s
Comuter Science Education Research (CSER) group (Vivian et al., 2014), and face-to-face
workshops (Bower et al., 2017; Chalmers, 2018). A great effort was made to link these PD
opportunities to the different syllabi, so that teachers would find the translation from PD to
classroom use as seamless as possible.

In 2018, we wrote a paper where we quoted a colleague stating that by adding the terms
‘coding’ or ‘computational thinking’ to a research grant proposal in the field of education,
you would pretty much guaranteed funding (Hickmott & Prieto-Rodriguez, 2018). While this
was said in jest, there was a feeling at the time in Constructionist circles, that the teachings of
Seymour Papert were now ripe for worldwide implementation. Indeed, Grover and Pea called
computational thinking ‘a competency whose time has come’ (2018, p.1), and claimed:

“In a world infused with computing, computational thinking is now being
recognized as a foundational competency for being an informed citizen
and being successful in all STEM work, and one that also bears the
potential as a means for creative problem solving and innovating in all
other disciplines” (2018, p. 34).

Presumably to facilitate incorporating knowledge of coding into all these other
disciplines, the NSW Education Standards Authority (NESA) prepared the Coding and
computational thinking across the curriculum guide for teachers. This guide aimed to
develop algorithmic and computational thinking skills to better enable students and teachers
to reach a coding goal. The guide highlighted the areas where computational thinking can be
applied within the existing NSW K–8 syllabuses and contained activities and links to
resources organised by stages of learning and learning areas.

Prieto-Rodriguez (2023). Coding and Computational Thinking: A time that came and went but will always be ours. In Online
Proceedings of the Coding, Computational Modeling, and Equity in Mathematics Education Symposium, St. Catharines

(Canada), April 2023.

CCMEME
2023

Five years and a global pandemic have passed and, at least in Australia, the
professional development funding climate seems to have lost interest in coding and
computational thinking in favour of the old classics of basic literacy and numeracy. No
longer we see an appetite for innovation that would see young people develop into the
creative thinkers of the future, but we are forced into standardised lesson plans and strategies
to improve our PISA rankings based on rote learning and memorisation. The Coding and
computational thinking across the curriculum guide has been discontinued and can no longer
be found in the NESA website. When I started writing this paper before the symposium in
2022 there were new priorities that teachers should focus on for integration across the
curriculum: Aboriginal and Torres Strait Islander histories and cultures, Asia and Australia's
engagement with Asia, and Sustainability.

The much-needed training for teachers to implement the digital technologies syllabus
has also become harder to provide. Teachers have very busy schedules and having our PD
initiatives accredited with authorities to contribute to the 50 hours of PD required of teachers,
was always a way to ensure participation. This has also changed. It is practically impossible
to have our initiatives accredited unless we have staff devoted to preparing endless
applications every time we offer a workshop.

And yet, in this climate, my work continues to focus, as it did twenty years ago, on the
integration of coding and computational thinking into the mathematics curriculum. Whether it
is a funding priority, a curriculum priority; whether it is in the syllabus or not, I still believe
in the power of computing to support the learning of mathematics and vice versa.

I am not the only one. From the 1960s, a limited yet highly influential group of
educational researchers has delved into the integration of computer programming to enhance
the understanding of mathematics. The year 2006 marked a turning point with the
popularisation of the term 'computational thinking' by Jeannette Wing, triggering a notable
upsurge in research activity within this field. The body of literature that connects
mathematics education with computational thinking is not insignificant. In a systematic
analysis we conducted in 2017, at the beginning of the explosion of funding mentioned
above, we found that a substantial portion of studies originated from computer science
academics rather than experts in the field of education. We also noted that although
mathematics is somewhat a focus of the research, studies tend to revolve around teaching
programming skills. Additionally, a predominant portion of these studies adopted small-scale
research designs focused on self-reported attitudes and beliefs. As a result, we drew the
conclusion that there are significant opportunities to pursue more robust research designs that
explicitly target mathematics and report on tangible learning outcomes (Hickmott et al.,
2018).

But first we need to be clear on what these “tangible outcomes” are. If they are defined
by achievement in formal examinations, we need to ask ourselves: will results in a
standardised mathematics test taken by children who learned coding tell us whether they have
indeed mastered any mathematics content that is worth knowing?

And as for the research designs, how do we know that the teachers who we train to
facilitate this new way of knowledge construction, have indeed learned something? In terms
of this second question, in 2018 we reported on our six year-long experience training teachers
using Seymour Papert’s Constructionist principles (Papert, 1980). Our research concluded
that testing teachers to ascertain whether they had learned the concepts and skills we were
teaching them really did detract from the experience (Hickmott & Prieto, 2018).

Prieto-Rodriguez (2023). Coding and Computational Thinking: A time that came and went but will always be ours. In Online
Proceedings of the Coding, Computational Modeling, and Equity in Mathematics Education Symposium, St. Catharines

(Canada), April 2023.

CCMEME
2023

As for the first, over the past few years I have been working with Celia Hoyles and
Richard Noss on the implementation in Australia of ScratchMaths. ScratchMaths is a two-
year computing and mathematics-based curriculum for Key Stage 2 in the UK (equivalent to
Years 4 and 5 in Australia). For the Australian implementation, we conducted professional
development with teachers for roughly 8 weeks, commencing with a 2-day professional
development workshop and ending with a final showcase where teachers shared their
experiences and samples of students’ work. We also offered support during the interim
classroom implementation period. The aim of the project was to explore participant teachers’
perceptions of their ability to facilitate students’ learning processes to develop mathematical
ideas through coding, and how those perceptions varied after eight weeks of professional
learning.

The project was one of the most successful ones I have run: teachers loved the
materials, gained confidence in teaching coding (statistically significant!) and also learned
coding. Furthermore, their students also showed significant improvement in their learning of
coding and computational thinking but also in their enjoyment of mathematics.

We observed increases in participants’ teaching self-efficacy across both mathematics
and computing (see Table 1). A paired-samples t-test was conducted to check for differences
before and after to attending the workshop and after attending showed a number of statistically
significant results. There was a change in teachers’ perceptions of their ability to teach
mathematics with programming before (M = 3.3, SD = 0.47) and after the intervention (M =
4.5, SD = 0.08); t = -5.09, p = 0.037. There was also a statistically significant difference in their
self-efficacy with regards to coding and computational thinking before (M = 3.2, SD = 0.78)
and after the intervention (M = 4.3, SD = 0.23); t = -5.05, p = 0.002.

Table 1. Pre- and post-survey results (items in Mathematics scale preceded by an asterisk)
 Pre Post Gain
I feel confident using simple programs for the computer. 4.60 4.71 0.11
I know how to teach programming concepts effectively. 2.67 4.14 1.48
I can promote a positive attitude towards programming in my students. 4.13 4.57 0.44
I can guide students in using programming as a tool while we explore
other topics. 2.93 4.43 1.50
*I can guide students in using mathematical thinking as a tool when
programming. 3.13 4.43 1.30
I feel confident using programming as an instructional tool within my
classroom. 2.67 4.17 1.50
I can adapt lesson plans to incorporate programming as an instructional
tool. 2.93 4.29 1.35
I can create original lesson plans, which incorporate programming as
an instructional tool. 2.87 4.14 1.28
I understand how mathematics concepts relate to programming
concepts. 3.00 4.43 1.43
I appreciate the value of teaching mathematics and programming in an
integrated manner. 3.87 4.57 0.70

*All items were presented in a 5-point scale from Strongly Disagree (coded as 1) to Strongly
Agree (coded as 5).

Prieto-Rodriguez (2023). Coding and Computational Thinking: A time that came and went but will always be ours. In Online
Proceedings of the Coding, Computational Modeling, and Equity in Mathematics Education Symposium, St. Catharines

(Canada), April 2023.

CCMEME
2023

It was to hear about the positive outcomes and insights from the ScratchMaths
professional development workshops and the subsequent trial period. The teachers' feedback
provided valuable information about the effectiveness of the program and areas for
improvement. Here's a summary of the key points from the research project:

1. Positive Reception and Student Engagement:
- Teachers expressed positive sentiments about ScratchMaths after the trial

period.
- Student work samples and reflective comments showcased students' engagement

in learning.
- Teachers reported that students looked forward to ScratchMaths sessions each

week.
- The resources were praised for being well scaffolded and promoting

collaboration and social support for learning.
2. Increased Self-Efficacy:

- Participant teachers reported an increase in their self-efficacy with mathematics
and coding.

- One teacher mentioned that ScratchMaths made complex concepts, like 2D
shapes, practical and understandable.

- Coding provided an opportunity for teachers to feel supported in an area where
they might not have felt as confident (e.g., coding for a teacher strong in
mathematics).

3. Integration of Mathematics and Coding:
- While ScratchMaths led to sustained student engagement, not all students

engaged equally with the mathematical concepts within the activities.
- Teachers acknowledged that the mathematical aspects needed to be more

explicitly directed to ensure all students engaged with them.
- Some students used a trial-and-error approach to complete activities, rather than

engaging with the mathematical concepts.
- Teachers acknowledged that the activities were effective in reinforcing concepts

already taught in a practical manner.
4. Differing Perspectives on Learning Outcomes:

- In one regional focus group, teachers viewed coding as a more significant
learning outcome than mathematics.

- In the metropolitan area, teachers observed that some students focused more on
trial-and-error approaches rather than mathematical problem-solving.

- All teachers agreed that the activities were useful for reinforcing concepts.
Based on this feedback, we concluded that ScratchMaths was successful in engaging

students and improving teachers' self-efficacy. However, there's still a need to address the
varying levels of engagement with the mathematical content among students. Future
iterations of the program could focus on providing more explicit guidance for students to
engage with the mathematical aspects of the activities. Additionally, it might be valuable to
continue emphasising the integration of mathematics and coding, highlighting how coding
can serve as a tool for enhancing mathematical understanding. This could involve refining the
instructional approach to strike a better balance between coding exploration and
mathematical engagement.

Prieto-Rodriguez (2023). Coding and Computational Thinking: A time that came and went but will always be ours. In Online
Proceedings of the Coding, Computational Modeling, and Equity in Mathematics Education Symposium, St. Catharines

(Canada), April 2023.

CCMEME
2023

Overall, the feedback from the teachers who participated provided important insights
for refining ScratchMaths to align with the desired learning outcomes and ensuring that both
coding and mathematics are effectively integrated. These results were presented in the annual
STEM conference (Prieto-Rodriguez at al., 2019).

We have conducted another four years of (heavily interrupted by a worldwide
pandemic) workshops for teachers since the results above. Our amalgamated analysis of
survey responses collected during these 4 years of professional development shows results
entirely consistent with the ones presented in the 2019 publications.

As a final reflection I would like to remark that this research shows that both teachers
and students benefit from the integration of mathematics and computer science, and will
continue to do so, whether funding agencies consider it worthwhile or not.

References

ACARA. (2018a). Digital Technologies curriculum rationale. Retrieved from
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/digital-
technologies/rationale/

ACARA. (2018b). F-10 Curriculum - General Capabilities. Retrieved from
https://www.australiancurriculum.edu.au/f-10-curriculum/general-capabilities/

Bower, M., Wood, L. N., Lai, J. W., Highfield, K., Veal, J., Howe, C., ... & Mason, R.
(2017). Improving the computational thinking pedagogical capabilities of school
teachers. Australian Journal of Teacher Education, 42(3), 53-72.

Chalmers, C. (2018). Robotics and computational thinking in primary school. International
Journal of Child-Computer Interaction, 17, 93-100.

Commonwealth of Australia. (2016). STEM Programme Index. Retrieved from
http://www.chiefscientist.gov.au/2016/01/spi-2016-stem-programme-index-2016-2/

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has
come. Computer science education: Perspectives on teaching and learning in
school, 19(1), 19-38.

Hickmott, D., Prieto-Rodriguez, E., & Holmes, K. (2018). A scoping review of studies on
computational thinking in K–12 mathematics classrooms. Digital Experiences in
Mathematics Education, 4, 48-69.

Hickmott, D., & Prieto-Rodriguez, E. (2018). To assess or not to assess: Tensions negotiated
in six years of teaching teachers about computational thinking. Informatics in
Education, 17(2), 229-244.

Falkner, K., Vivian, R., & Falkner, N. (2014). The Australian Digital Technologies
Curriculum: Challenge and Opportunity. Paper presented at the Australasian
Computing Education, Auckland, New Zealand.

Papert, S. A. (1980). Mindstorms: Children, Computers, And Powerful Ideas. Hachette UK.
Prieto-Rodriguez E, Holmes K, Hickmott D, Berger N, (2019) 'Using Coding to Teach

Mathematics: Results of a Pilot Project', Using Coding to Teach Mathematics: Results
of a Pilot Project, Queensland University of Technology, Brisbane, Australia.

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. Paper
presented at the 18th annual conference on innovation and technology in computer
science education, Canterbury, United Kingdom.

Prieto-Rodriguez (2023). Coding and Computational Thinking: A time that came and went but will always be ours. In Online
Proceedings of the Coding, Computational Modeling, and Equity in Mathematics Education Symposium, St. Catharines

(Canada), April 2023.

CCMEME
2023

Vivian, R., Falkner, K., & Falkner, N. (2014). Addressing the challenges of a new digital
technologies curriculum: MOOCs as a scalable solution for teacher professional
development. Research in Learning Technology, 22.

