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Objects-to-think-with Embodying concepts Discussion

We regard programmable robots and similar 
digital technologies as powerful means to 
support the learning of mathematics. 
Embodying Concepts

Papert (1980) proposed the notion of 
“syntonic learning” to interpret his 
observations of children’s use of Logo to 
program a turtle to trace out a circle. He noted 
their tendencies to perceive and characterize 
those movements in terms of their own 
actions and intentions. Contrasted with 
dissociated learning, syntonic learning is about 
engaging one’s body and senses, aiming to 
develop a level of self-knowledge that enables 
the learner to transpose their own movement 
in space onto an object’s movement or into a 
program for movement. 

Phrased in terms of objects-to-think-with, 
such forms extend the knower – physically 
and/or cognitively. To illustrate physical 
extension, using Papert’s example of gears, it is 
easy to imagine how playing with meshed 
gears might support insight into ratios, 
proportions, linear-causality, and other 
abstractions. As for cognitive extension, it is 
also easy to imagine how an abstracted 
understanding of simple gears might enable a 
knower to anticipate the behaviours of a 
compound gear. 

Importantly, while we describe such 
cognitive acts as “extensions” in the previous 
paragraph, we suspect that there are actually 
multiple processes at play in such moments, 
including what others have labelled as 
“projection,” “distribution,” and 
“displacement.” All these physical-and-
cognitive actions are subsumed within the 
notion of “embodiment,” which is perhaps a 
better choice than “extension” or “syntonic” 
for the purposes of this discussion. 

To our understanding, body syntonic 
learning is consistent with such contemporary 
discourses on cognition as enactivism (Varela, 
Thompson, & Rosch, 1991), embodied 
cognition (Shapiro, 2011), extended cognition 
(Clark & Chalmers, 1998), inclusive materialism 
(de Freitas & Sinclair, 2014), and other 
perspectives that reject ego-centric models on 
cognition and lean more toward eco-centric 
interpretations in which cognitive activity is 
understood as embodied and embedded in 
and across multiple levels of organization. In 
general, these perspectives assume that 
human cognition simultaneously depends on 
having a biological body and on being part of a 
social, cultural, and/or ecological corpus. One’s 
physical body defines possible movements and 
ranges of perception; the grander context in 
which one is embedded defines appropriate 
actions and the scopes of interpretive 
possibility. Across these frames, one’s learning 
is understood to start with ranges of bodily 
motions and perceptions, but that learning is 
much elaborated through the technologies 
made available by the context. 
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We have offered many robotics workshops for 
10- to 12-year-olds, focussing on developing 
spatial reasoning. One of the consistent findings 
in these workshops is that mathematics classes 
have not prepared students well to use decimal 
numbers flexibly. However, this changes when 
children learn decimals when programming 
robots to move. 

In one 4th-grade class, we offered a robotics 
workshop at the start of the school year – before 
any formal instruction on decimals. The 
workshop began with the question, “How many 
wheel rotations are needed for the robot to 
travel 100 cm?” Each pair of students was 
provided with a meter stick, an EV3 Mindstorms 
robot, and an iPad loaded with EV3 Mindstorms 
software. They were also given initial directions 
on how to instruct the robot to move forward –
namely, by entering the number of desired 
wheel rotations. 

Emma and Jane began by guessing 100, which 
was wildly excessive.

For their second attempt, Emma and Jane 
entered 15, and they watched as the robot 
travelled more than double the length of the

meter stick. For their third attempt, they entered “6,” and the robot travelled just past the end of the meter 
stick. 

Since six turns were too many, the girls reasoned, “We need to go back one” to five rotations. However, 
when they entered “5,” the robot did not quite reach the end of the meter stick. Aiming to help, the teacher 
asked, “What numbers are between 5 and 6?”

The girls looked a little confused, and one uttered, “Nothing,” prompting the teacher to point to the 
locations on the meter stick to show that there were intervals between 5 and 6. She showed them how to 
enter decimals into the programming code. She explained, “Five decimal five is exactly halfway between five 
and six,” prompting Emma and Jane to try “5.6.” When the robot almost travelled to the end of the meter 
stick, they entered “5.7.” To their delight, upon testing, the robot travelled 100 cm. 

Sometime later, the concept of decimal fractions came up in mathematics class. The teacher enthusiastically 
reported that students were unexpectedly fluent with the concept, able to read measurements, combine 
amounts, and predict values with confidence and accuracy. In her experience of teaching Grade-4 
mathematics, the concept had never been so “straightforward” for learners.

What does “number” mean for a 4th-grader who is competent with decimal fractions in mathematics class, 
but who cannot identify a number between two sequential wholes when tasked with coding a robot to 
move in a straight line? 

Time and again in our research engagements, students have failed to transfer learnings about number (in 
particular, decimal fractions) from math classes to robotics workshops – a lapse, we believe, that signals an 
important difference between a “mathematical concept” and an “object-to-think-with.” 

Consider the number line, for instance, 
pasted on the classroom wall and 
peppered throughout classroom 
resources. The number line was certainly 
a familiar object to these students. With 
it, they had counted, compared, and 
calculated. But the familiarity developed 
through those activities did not appear 
to make the number line available as an 
object-to-think-with.

And, for the number line to be the 
ground of the activity – an object-to-
think-with – it must be an embodied 
concept. It must give body to an idea 
that typically does not have one.

Using Papert’s (1980) construct of “objects-
to-think-with,” we explore the assertion that 
the situated, movement-focused, and 
problem-driven spaces made available through 
digital technologies can enable the blending of 
competencies and concepts in ways that can 
amplify mathematical understanding. That is, 
we examine how objects-to-think-with might 
be leveraged to operate explicitly and 
implicitly as part of sense making in 
mathematics contexts.

Papert’s notion of objects-to-think-with has 
“more to do with structuring acts of moving
than with acts of moving structures” (Ng et al., 
2018). That is, for Papert, objects-to-think-with 
served to “concretize the formal” (p. 21). 

The objects-to-think-with that we focus on 
is number lines. For us, the interpretive power 
of number lines arises in the manner in which
they always and already sit across enactive, 
iconic, and symbolic spaces of thinking.
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